Kövess minket!

NewsletterGoogle+RSS
Feliratkozom a heti hírlevélre

Utolsó hozzászólások

2017. 07. 27. - 09:10KGabi

Mi is tudunk munkát adni: mérnököknek  Jooble 

2017. 06. 20. - 20:31Hitetlen Tamás

Ez a cikk egy idealista naíva.

A cél dátum 2067-2117. A holdrajutás 1968(?) Marsra még csak szonda és robot jutott.

A Bioszféra 2 program megbukott. Voltak sikeresebb kísérletek, de kísérletek.

2017. 05. 23. - 09:12Anonymous

Hiya very cool web site!! Guy .. Excellent .. Superb

.. I'll bookmark your blog and take the feeds also? I'm satisfied to find numerous helpful info here in the put

up, we need develop extra techniques on this regard, thank you for sharing.

. . . . .

A Rosetta képein feltárult az égitest belseje

2017.03.22.
Az ESA Rosetta űrszondája eddig nem látott jelenséget figyelt meg: egy hegyomlást a 67P/Csurjumov–Geraszimenko-üstökösön.
Az üstökösmagok a Naprendszer ősi anyagát, a keletkezésük idején uralkodó fizikai és kémiai viszonyok lenyomatát szinte változatlanul, eredeti állapotában őrző, egyszerű felépítésű kis égitestek – körülbelül 5 milliárd éves „időkapszulák”. Tanulmányozásukkal bepillanthatunk a Naprendszer kialakulásakor végbement fizikai folyamatokba, és megismerhetjük a korai Naprendszert.
 
Az üstökösök aktivitása
 
Az üstökösök gázból és porból álló kómája, gáz- és porcsóvái a Nap hőjének hatására alakulnak ki, amikor a Naphoz közeledve a kis égitest magjának jeges-poros anyaga kiszabadul. Az üstökös kis tömegű, így csekély tömegvonzású magjából könnyen a világűrbe távozhat a gáz és a por. Ezt a folyamatot nevezzük az üstökös aktivitásának, ami olykor a Földről is tanulmányozható. Esetenként egy-egy égi vándornak szabad szemmel is megfigyelhető, látványos gáz- és porcsóvái és fényes feje vagy kómája van, mint például az éppen 20 évvel ezelőtt, 1997 tavaszán hazánkból is jól látható Hale–Bopp-üstökös esetében.
 
 
1. ábra. Példák az üstökösök aktivitásának következményeire: a látványos és aktív Hale–Bopp-üstökös széles porcsóvája és egyenes gázcsóvái 1997. április 6-án Marc Chapelet francia amatőr csillagász 300 mm-es teleobjektívvel készített felvételén (bal oldalon). 
A 67P/C–G-üstökös magjáról a Rosetta szonda navigációs kamerája (NavCam) által 2015. július 20-án a magtól 171 km-re készített felvételén jól látszanak a por-jetek (jobb oldalon)
ESA/Rosetta/MPS, OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
 
Annak megismerésére, hogy valójában hogyan válik aktívvá egy üstökös, honnan és hogyan távozik belőle a gáz és a por, vagyis pontosan milyen az üstökösaktivitás mechanizmusa, az egyik legjobb módszer az, ha űrszondát küldünk egy aktív üstökösmag közvetlen közelébe. A szonda az üstököst már a Naptól nagy távolságra tanulmányozni kezdi, az aktivitás elindulásától a végéig, miközben az üstökös áthalad a pályája Naphoz legközelebb eső pontján, amelynek környékén a legnagyobb az aktivitásának – gáz- és porkibocsátásának – a mértéke.
 
A Rosetta-üstökösprogram
 
Az Európai Űrügynökség (ESA) Horizont 2000 tudományos programjának egyik „alapmissziója” a Rosetta-űrprogram, amely a 67P/Csurjumov–Geraszimenko-üstökös (67P/C–G) magjának és közvetlen környezetének hosszú időn keresztül való részletes vizsgálatát tűzte ki célul. A Jupiter üstököscsaládjához tartozó, mintegy 6,5 év keringési idejű üstökös Nap körüli ellipszispályáján naptávolban 5,68 CsE-re, napközelben pedig 1,24 CsE-re jár a Naptól (1 CsE = 1 csillagászati egység, azaz a Nap–Föld-középtávolság, mintegy 149,6 millió kilométer).
 
A Rosetta 2014. augusztus 6-án állt pályára a 67P/C–G-üstökös magja körül, és közelről kezdte vizsgálni a mag felszínét, gáz- és poranyagát, a napszél és az üstökös kölcsönhatását. Különösen érdekes volt végigkövetni az üstökös aktivitását a nagy naptávolságtól kezdve a 2015. augusztus 13-án bekövetkezett napközelségen át még további egy éven át. Közben, 2014. november 12-én a Philae leszállóegység – kalandos út után, de végül sikeresen – landolt az üstökösmag felszínén, és csaknem hatvan órán keresztül végzett ott méréseket. Minden mért adatot, képet maradéktalanul továbbított a Rosetta szondán keresztül a Földre. 2016. szeptember 30-án maga az anyaszonda is előre eltervezett módon leszállt az üstökösmag kijelölt területére, és ezzel véget ért a Naprendszer-kutatásban egyedülálló, rendkívül sikeres és tudományos eredményekben gazdag, felfedező célú űrprogram.
 
A Rosetta szonda felvételei az üstökösaktivitás új forrásvidékét fedték fel
 
A Rosetta szonda OSIRIS (Optical Spectroscopic and Infrared Remote Imaging System) képfelvevő rendszerének kamerái segítségével a napközelség felé közeledő 67P/C–G-üstökös felszínén sikerült az anyagkibocsátás egy új forrásvidékét azonosítani. Tóth Imre (MTA CSFK Konkoly-Thege Csillagászati Intézet) is részt vett az OSIRIS tudományos kutatócsoportjában és az üstökösmag felszínén levő új aktív terület feltérképezésében. A vizsgálat eredményei a Nature Astronomy folyóiratban közölt cikkben jelentek meg 2017. március 21-én.
 
Az üstökösmag közelében az OSIRIS kamerái többször is rövid ideig tartó intenzív anyagkibocsátást figyeltek meg. Az anyagkibocsátásoknak a felszínen lokalizált forrásaik voltak, amelyeket ugyan nehezen, de az esetek többségében lehetett azonosítani. A legtöbb forrás az üstökösmag két tömbjét elválasztó „nyaki” részen, illetve kör alakú gödrökben, mélyedésekben volt. Azonban csaknem egy hónappal az üstökös napközelsége előtt, 2015. július 10-én a Rosetta navigációs kamerája (NavCam) az üstökösmag Aswan elnevezésű területe felett egy korábban ott nem látott porfelhőt, illetve fényes porsugarat (por-jetet) figyelt meg, ami egy hirtelen végbement anyagkidobás, kitörés poranyaga volt.
 
Öt nappal később, 2015. július 15-én az OSIRIS nagy felbontású, kis látószögű kamerájának (NAC) részletes felvételein pontosabban azonosítani lehetett a porkitörés helyét az 
Aswan területen. A részletes felvételeken az Aswan meredek falú szakadékfala, szirtfala (meredély, „partnyesés” vagy „rézsű”) területén egy addig nem látott éles, fényes peremet lehetett megfigyelni. (Ugyanis már voltak ugyanerről a meredek falról és környezetéről korábbi részletes NAC-felvételek, amelyekkel a jelenlegieket össze lehetett hasonlítani, és a változások szembetűnőek voltak.) Ami korábban csak sejtés volt, most beigazolódott: a meredek szirtfalak is lehetnek az üstökösmag-aktivitás forrásai (sőt a hirtelen, rövid idő alatt végbemenő kitörések formájában kiszabaduló gáz- és porkibocsátásoknak is).
 
2. ábra. A Rosetta szonda navigációs (NavCam) és tudományos képfelvevő kamerái (OSIRIS) által a 67P/C–G-üstökös magjáról és annak Aswan területéről 2015 júliusa és decembere között készített felvételek. 
A bal felső képen az Aswan terület szirtfalának helyét nyíl mutatja. 
A jobb felső képen jól látszanak a fényes porsugarak (por-jetek). 
A bal alsó képen, a nyílnál az üstökösmag belsejének fényesebb anyaga látszik az Aswan szirtfalának leomlása után. 
A jobb alsó képen a leomlott szirtfal és az omlási törmelék fényes takarója látható az üstökösmag sötétebb környezetében
ESA/Rosetta/MPS, OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
 
A szublimációval kiáramló gáz magával ragadja és eltávolítja a felszínről a poranyagot, így alakítva ki a mag felett megfigyelhető porfelhőt, esetleg porsugarat, por-jetet. Tehát nem szükséges szuperillékony anyag, pl. szén-monoxid vagy szén-dioxid egy üstököskitörés létrejöttéhez, hanem a felszín egy meredek falának leomlása is elegendő. Természetesen az üstökösmag kis felszíni gravitációja is okozhatja a laza, nagyon porózus szerkezetű poros-jeges anyagú fal leomlását, „suvadását”, vagyis a lejtőcsuszamlást. Az OSIRIS megfigyelése megmutatta azt is, hogy milyen törmeléket eredményez a fal lecsúszása, milyen a kisebb-nagyobb szemcsék és tömbök eloszlása a szirtfal tövében, hogyan megy végbe a fal anyagának feldarabolódása, morzsolódása.
 
 
3. ábra. Az OSIRIS képfelvételei alapján készített térbeli (3D) üstökösmag-modell az Aswan szirtfal leomlása előtt (a), a leomlást megelőző repedéssel (c) és a leomlás után (b, d). 
A törésvonal nagyjából 1 méter széles volt, és mintegy 12 méterre húzódott a szirtfal omlás előtti peremétől (c). 
Az üstökösmag felszín alatti, fényesebb anyaga is megfigyelhetővé vált (b, d). 
A leomlott fal méreteit a (d) panel mutatja: mintegy 57, illetve 81 m a szélessége és mintegy 65 m a magassága
ESA/Rosetta/MPS, OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
 
Az OSIRIS-megfigyeléseknek köszönhetően tehát bepillanthattunk az üstökösmag felszíne alá: tanúi lehettünk az Aswan-szirtfalleomlás következményeképp bekövetkező üstököskitörésnek. A szirtfal leomlása, a külső borítás lecsúszása után felszínre került az üstökösmag – ugyan csak legfelső, de mégis – belső része. Ez, valamint a lecsúszott törmelék kisebb-nagyobb, friss, jeges-poros tömbjei sötét, alacsony fényvisszaverő képességű környezetükhöz képest világosabbak, fényvisszaverő képességük nagyobb. Ugyanis az üstökösmag felszínének legnagyobb része a beeső napfénynek csupán 4%-át veri vissza, azaz fényvisszaverő képessége 0,04, míg a csuszamlás után felszínre került anyagé 0,4-nél is nagyobb, vagyis a 40%-ot is meghaladhatja ez az arány.
 
Az OSIRIS NAC kamera felbontása lehetővé tette a mintegy 0,3 méteres tömbök azonosítását is. A megfigyelt tömbök mérete 0,3–16 méter közötti. A fal omlása előtt a 1,5 méteresnél nagyobb tömbök felszíni gyakorisága 11 784 volt négyzetkilométerenként, a fal leomlása után ez az érték 18 438 négyzetkilométerenkénti sűrűségre növekedett. A növekedést elsősorban a 1,5–3 méteres tömbök számának jelentős növekedése tette ki. A becslések szerint a leomlott anyag térfogatának 1%-a a kitörés porfelhőjében távozott, ami az üstökösmag 0,535 gramm köbcentiméterenkénti átlagsűrűsége mellett azt jelenti, hogy a kitörés során 108 tonna anyag hagyta el az üstökös magját. A Nature Astronomyban megjelent cikk tárgyalja a sziklafal leomlásának lehetséges fizikai okát is: ez a hősokk, összefüggésben az üstökösmag tengely körüli forgásával. A hősokkot a napi gyors és nagymértékű hőingadozás válthatta ki. E hipotézis összhangban van az üstökös anyagával és a földi laboratóriumokban végzett üstökösszimulációs kísérletekkel is.
 
4. ábra. A 67P/C–G-üstökösmag modellszámítással kapott felszíni hőmérséklet-eloszlásának hőtérképe az Aswan területen (fehér négyzet) 1.50-kor a helyi napfelkelte után, valamint 20 perccel később (2.10-kor) (a). A leomló sziklaszirtre egy fehér nyíl mutat. 
A leomlott törmelék területi kiterjedése és hőmérséklete jelentősen megnövekedett az eltelt 20 perc alatt, ami elősegítette a gáz- és porkibocsátási aktivitást (b)
ESA/Rosetta/MPS, OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
 
A Nature Astronomy folyóiratban most közölt eredmények a Rosetta űrszonda képfelvevő rendszere segítségével megfigyelt üstökösösaktivitás új felszíni forrásáról teljesebb képet adnak az üstökösaktivitás, azon belül a hirtelen kitörések mechanizmusának hátteréről, lehetséges forrásairól és folyamatáról.
 
 
Forrás: MTA
Cikk értékelése: 
Szerző: Brigitte

Új hozzászólás

Filtered HTML

  • A webcímek és email címek automatikusan kattintható hivatkozásokká alakulnak.
  • Engedélyezett HTML jelölők: <a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd> <br> <p>
  • A sorokat és bekezdéseket a rendszer automatikusan felismeri.

Plain text

  • A HTML jelölők használata nem megengedett.
  • A webcímek és email címek automatikusan kattintható hivatkozásokká alakulnak.
  • A sorokat és bekezdéseket a rendszer automatikusan felismeri.
CAPTCHA
Ezzel a feladattal teszteljük, hogy valódi látogató vagy-e.

Kapcsolódó cikkek

A Science magazin különkiadásában a Rosetta űrszonda eredményeit feldolgozó első tudományos publikációk jelentek meg.
Az Űrvilág hagyományos évindítója
Az ESA második nagy űrprogramját a röntgencsillagászatnak szenteli.
A Rosetta leszállóegysége elküldte az első képeit az üstökösmagról.

Friss hírek

E-hajtómű? Miért ne?